Current Transducer HA 50-SRI/SP1

For the electronic measurement of DC, AC and pulsed currents, with a galvanic isolation between the primary (high power) circuit and the secondary (electronic) circuit.

Electrical data					
I _{PN}	Primary nominal DC or rms current	50	А		
I _P	Primary current measuring range	± 70	А		
Î	Overload capacity (Ampere Turns)	30000	А		
I _{OUT}	Analogue output current $@ I_{P} = 0$	4	mA		
	Analogue output current @ ± I _{PN}	20	mA		
R _{M max}	Maximum measuring resistance	200	Ω		
V	Supply voltage	+ 24	V		
I_	Current consumption (max) ¹⁾	55	mA		
Ŭ _d	Rms voltage for AC isolation test, 50 Hz, 1 mn	2.2	kV		

Accuracy - Dynamic performance data					
x	Accuracy ²⁾ @ $I_{PN}, T_{A} = 25^{\circ}C$	± 2	%		
		Max			
	Electrical offset current @ $I_p = 0$, $T_A = 25^{\circ}C$	± 0.1	mA		
I _{OM}	Residual offset current $@I_p = 0$				
0 m	after an overload of $3 \times I_{PN}$	< ± 0.025	mA		
I _{OT}	Thermal drift of offset current $T_A = -25 + 70^{\circ}C$	± 0.02	mA/°K		
TCE _G	Thermal drift of gain $\mathbf{T}_{A} = -25 + 70^{\circ}C$	± 0.05	%/°K		
tav	Averaging time constant	100	ms		
κ _{cf}	Crest factor for stated accuracy	2			
f	Frequency bandwidth (- 3 dB) ³⁾	DC and			
		0.045 25	kHz		

(General data					
T	Ambient operating temperature	- 25 + 70	°C			
Ts	Ambient storage temperature	- 25 + 85	°C			
m	Mass	250	g			
	Standards ⁴⁾	EN50155,				
		ENV50121-3-2	(1996)			

Notes : 1) Including I

²⁾ Excludes the electrical offset

³⁾ Refer to derating curves in the technical file to avoid excessive core heating at high frequency

⁴⁾ A list of corresponding tests is available

Features

• Open loop transducer using Hall Effect

- Panel mounting
- Insulated plastic case to UL 94-V0
- Fully potted construction
- True Rms output.

Advantages

- Very good accuracy
- Low temperature drift
- Wide frequency bandwidth
- Very low insertion losses
- High immunity to external interference
- · Current overload capability
- Low power consumption

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptable Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications
- Railway equipment.

Dimensions HA 50-SRI/SP1 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

- General tolerance
- Primary through-hole
- Connection of secondary

± 0.5 mm Ø 35 mm

via 4 core Halogen free

screened cable 1 m in length

Remarks

- I_{OUT} is positive when I_{P} flows in the direction of the arrow.
- When generating a voltage by insertion of **R**_M, the developed voltage will be floating with respect to zero volts. The output terminals must therefore not be grounded.
- Temperature of the primary conductor should not exceed 90°C.
- This is a standard model. For different versions (supply voltages, secondary connections, unidirectional measurements, operating temperatures, etc.) please contact us.