

Target specification 5SFG 0980B12000x

1200 V, 980 A*

RoadPak SiC phase-leg module

- V_{DSS} = 1200 V •
- $I_{D} = 2 \times 980 \text{ A}^{*}$ •
- Molded package optimized for EV • application
- Pin-fin structure for lowest thermal • resistance
- lowest losses thanks to Silicon Carbide • chip-set
- main terminals with holes (screw • connection) or without holes for welding

Hitachi Energy

*Current rating based on chip rating times number of chips

Conditions Min. Unit Parameter Symbol Max. Drain-source voltage V_{DS} V_{GS} = 0 V, T_{vi} ≥ 25 °C 1200 v DC drain current T_{Cool} = 55 °C, T_{vj} = 175 °C \mathbf{I}_{D} 640 А t_p = 1 ms, duty cycle = 20%, T_{Cool} = 55 °C, Peak drain current I_{DM} 1500 А T_{vi} = 175 °C 15 V Gate-source voltage V_{GSS} -4 Transient gate-source voltage 2) V_{GSS,max} Maximum values under transient events < 50 ns -8 16 V V_{GS} = -4 V, T_{Cool} = 55 °C, T_{vi} = 175 °C 350 DC reverse drain current (body diode) А IDR Peak reverse drain current (body diode) IDRM $V_{GS} = -4 V$, $t_p = 1 ms$ 1500 А V_{GS} = -4 V Surge source current (body diode) 3000 А Issm DC reverse drain current (channel open) V_{GS} = 15 V, T_{Cool} = 55 °C, T_{vj} = 175 °C 640 А IDRS 3000 V_{GS} = 15 V А Surge source current (channel open) Issx Visol 1 min, f = 50 Hz 3300 v Isolation voltage 175 °C Junction temperature T_{vj} °C Junction operating temperature T_{vj(op)} -40 175 T_{stg} -40 150 °C Storage temperature M_{s} 2.6 3.1 Nm Mounting torque Module to cooler with M4 screws

¹⁾Maximum rated values indicate limits beyond which damage to the device may occur per IEC 60747 2) Based on chip capability

Maximum rated values 1)

MOSFET characteristic values 3)

Parameter	Symbol	Conditions		Min.	Тур.	Max.	Unit
Drain-source breakdown voltage	V(BR)DSS		T _{vj} = 175 °C	1200			V
		V _{GS} = 0 V	T _{vj} = 25 °C	1200			V
			T _{vj} = -40 °C	1200			V
Static drain-source on-state resistance 4)	R _{DS(on)}	I _D = 640 A, V _{GS} = 15 V	T _{vj} = 25 °C		1.8	2.2	mΩ
			T _{vj} = 175 °C		3.3	3.9	mΩ
Zero gate voltage drain current	I _{DSS}	V _{DS} = 1200 V, V _{GS} = 0 V	T _{vj} = 25 °C		2	10	uA
			T _{vj} = 175 °C		6	20	uA
Gate-source leakage current	lgss	V _{DS} = 0 V, V _{GS} = 15 V, T _{vj} = 25 °C				500	nA
Gate threshold voltage 2)	V _{GS(th)}	I _D = 200 mA, V _{DS} = V _{GS, Tvj} = 25 °C		1.8	2.5	3.6	V
Gate charge ²⁾	Q _G	I_D = 750 A, V_{DS} = 800 V, V_{GE} = -4 V +15 V			1.84		uC
Input capacitance 2)	Ciss	V_{DS} = 1000 V, V_{GS} = 0 V, T_{vj} = 25 °C, f = 100 kH	łz		39		nF
Internal gate resistance 2)	R _{Gint}				0.34		Ω
Turn-on switching energy		V_{DD} = 800 V, I _D = 750 A, R _G = 0.47 Ω , C _G = 47 nF,	T _{vj} = 25 °C		30		mJ
	Eon	$V_{GS} = -4 / +15 V$, $L_{\sigma} = 10$ nH, inductive load	T _{vj} = 175 °C		37		mJ
Turn-off switching energy		V _{DD} = 800 V, I _D = 750 A,	T _{vj} = 25 °C		20		mJ
	E _{off}	$ R_G = 1 \ \Omega, \ C_G = 47 \ nF, \\ V_{GS} = -4 \ / \ +15 \ V, \\ L_{\sigma} = 10 \ nH, \ \text{inductive load} $	T _{vj} = 175 °C		20		mJ

2) Based on chip capability

³⁾ Characteristic values according to IEC 60747 - 8

⁴⁾ R_{DSon} is given at chip level

Body diode characteristic values 5)

Parameter	Symbol	Conditions		Min.	Тур.	Max.	Unit
Diode forward voltage 2) 6)	V _{SD}	I _S = 360 A, V _{GS} = -4 V	T _{vj} = 25 °C		4.6		V
			T _{vj} = 175 °C		4.2		V
Reverse recovery current	Irr		T _{vj} = 25 °C		200		А
		-	T _{vj} = 175 °C		440		А
Recovered charge	Qrr	V _R = 800 V, I _F = 750 A,	T _{vj} = 25 °C		21		μC
		V _{GS} = -4 / +15 V, - R _G = 0.47 Ω, di/dt = 18 kA/μs	T _{vj} = 175 °C		28		μC
Reverse recovery time	t _{rr}		T _{vj} = 25 °C		30		ns
		L _σ = 10 nH inductive load	T _{vj} = 175 °C		45		ns
Reverse recovery energy	-	-	T _{vj} = 25 °C		4		mJ
	E _{rec}		T _{vj} = 175 °C		6		mJ

2) Based on chip capability

 $^{5)}$ Characteristic values according to IEC 60747 $-\,2$

6) Forward voltage is given at chip level

Hitachi Energy Switzerland Ltd Semiconductors Fabrikstrasse 3 5600 Lenzburg Switzerland Tel: +41 58 586 10 00

E-Mail: <u>salesdesksem@hitachienergy.com</u> www.hitachienergy.com/semiconductors We reserve the right to make technical changes or modify the contents of this document without prior notice. With regard to purchase orders, the agreed particulars shall prevail.

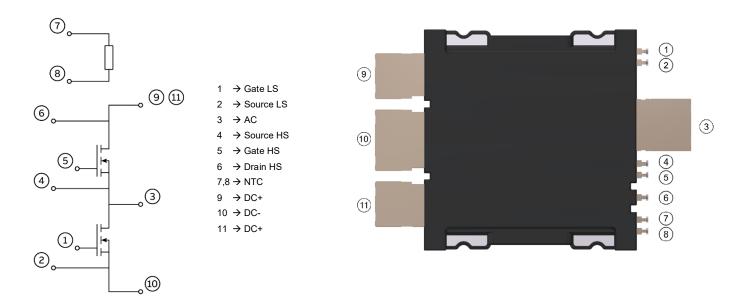
Hitachi Energy Ltd. does not accept any responsibility whatsoever for potential errors or possible lack of information in this document.

Package properties 7)

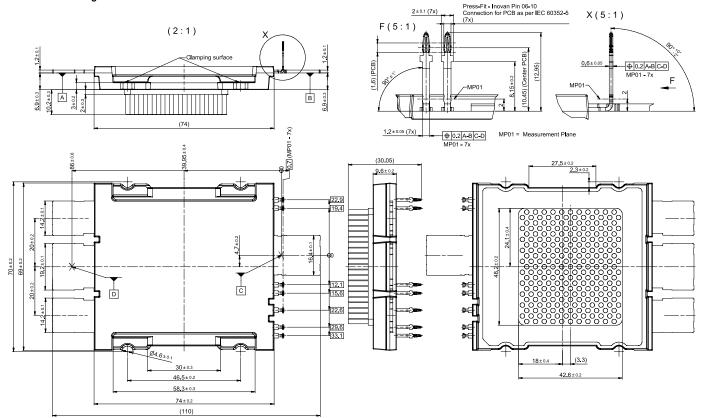
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit	
Thermal resistance junction to fluid	R _{th(j-f)}	T _{in} = 55°C, Coolant: 50% glycol/ 50% water, per switch, 10 l/min, dP < 120 mbar water-glycol		87	93.5	K/kW	
Comparative tracking index	СТІ		400			V	
Module stray inductance	L _{σ DS}			5		nH	
Resistance, terminal-chip	P	T _C = 25 °C		0.117		mΩ	
	R _{DD'+ss'}	T _c = 150 °C		0.227		mΩ	

Mechanical properties⁷⁾

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit	
	L	AC terminal to DC terminal		mm			
Dimensions W H	W	Mold width	69			mm	
	н	Baseplate cooler surface to middle of PCI	17.35			mm	
Clearance distance in air d _a	h	According to IEC 60664-1	Term. to base:		6.9		mm
	ua	According to IEC 00004-1	Term. to term:		3.3		mm
Surface creepage distance	ds	According to IEC 60664-1	Term. to base:		8.5		mm
			Term. to term:		8		mm
Mass	m				300		g


⁷⁾Package and mechanical properties according to IEC 60747 – 15

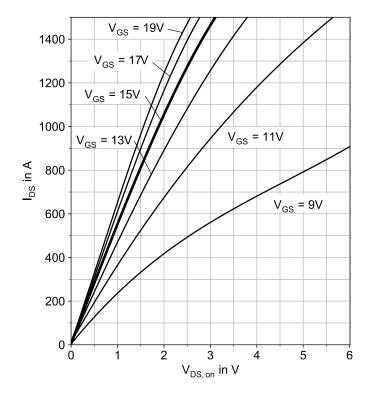
Hitachi Energy Switzerland Ltd Semiconductors Fabrikstrasse 3 5600 Lenzburg Switzerland Tel: +41 58 586 10 00


E-Mail: <u>salesdesksem@hitachienergy.com</u> www.hitachienergy.com/semiconductors We reserve the right to make technical changes or modify the contents of this document without prior notice. With regard to purchase orders, the agreed particulars shall prevail.

Hitachi Energy Ltd. does not accept any responsibility whatsoever for potential errors or possible lack of information in this document.

Electrical configuration

Mechanical drawing



Note: all dimensions are shown in millimeters

Hitachi Energy Switzerland Ltd Semiconductors Fabrikstrasse 3 5600 Lenzburg Switzerland Tel: +41 58 586 10 00

E-Mail: <u>salesdesksem@hitachienergy.com</u> www.hitachienergy.com/semiconductors We reserve the right to make technical changes or modify the contents of this document without prior notice. With regard to purchase orders, the agreed particulars shall prevail.

Hitachi Energy Ltd. does not accept any responsibility whatsoever for potential errors or possible lack of information in this document.

 $V_{GS} = 19V$ 1400 V_{GS} = 17V 1200 V_{GS} = 15V 1000 V_{GS} = 13V I_{DS} in A 800 V_{GS} = 11V 600 $V_{GS} = 9V$ 400 200 0 2 3 4 5 0 1 6 $V_{\text{DS, on}}$ in V

Fig. 1 Typical output characteristics

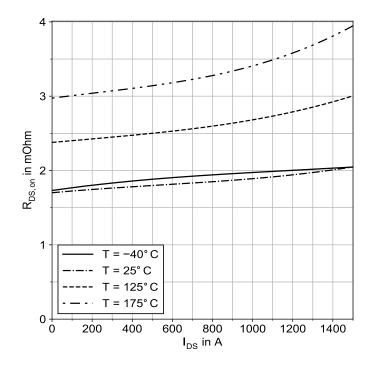


Fig. 3 Typical on-state resistance vs drain current for various junction temperatures

Fig. 2 Typical output characteristics

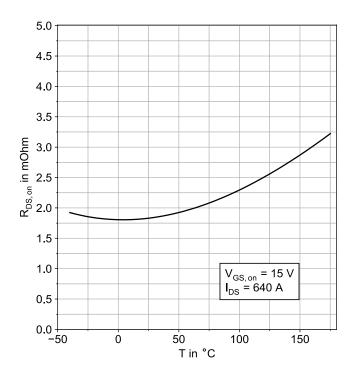


Fig. 4 Typical on-state resistance vs temperature

Hitachi Energy Switzerland Ltd Semiconductors Fabrikstrasse 3 5600 Lenzburg Switzerland Tel: +41 58 586 10 00

E-Mail: <u>salesdesksem@hitachienergy.com</u> www.hitachienergy.com/semiconductors

We reserve the right to make technical changes or modify the contents of this document without prior notice. With regard to purchase orders, the agreed particulars shall prevail.

Hitachi Energy Ltd. does not accept any responsibility whatsoever for potential errors or possible lack of information in this document.

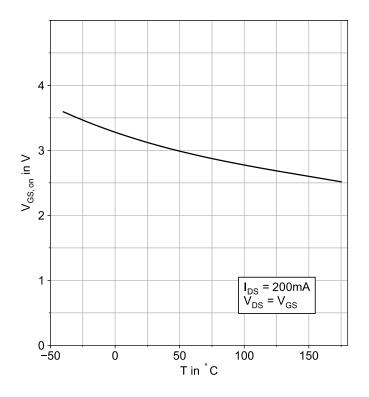


Fig. 5 Threshold voltage vs junction temperature

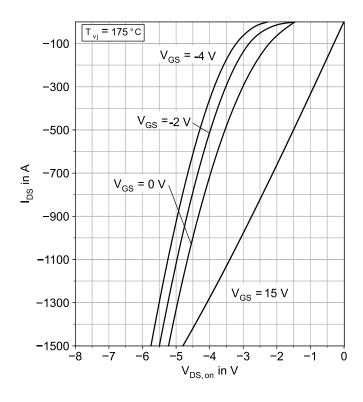


Fig. 7 Typical 3rd quadrant characteristics vs drain current

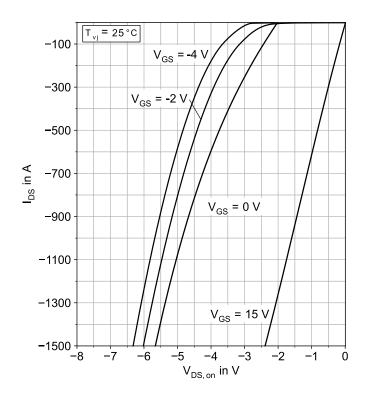


Fig. 6 Typical 3rd quadrant characteristics vs drain current

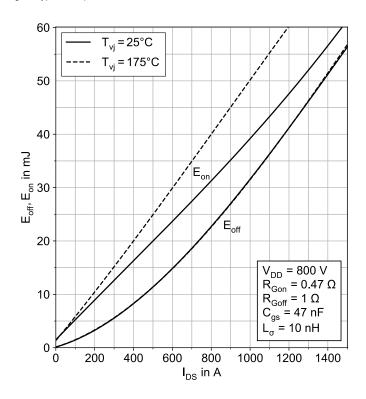


Fig. 8 Typical switching energies per pulse vs. drain current

Hitachi Energy Switzerland Ltd Semiconductors Fabrikstrasse 3 5600 Lenzburg Switzerland Tel: +41 58 586 10 00

E-Mail: <u>salesdesksem@hitachienergy.com</u> www.hitachienergy.com/semiconductors We reserve the right to make technical changes or modify the contents of this document without prior notice. With regard to purchase orders, the agreed particulars shall prevail.

Hitachi Energy Ltd. does not accept any responsibility whatsoever for potential errors or possible lack of information in this document.

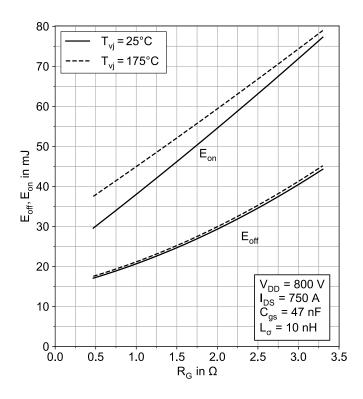


Fig. 9 Typical switching energies per pulse vs. gate resistor

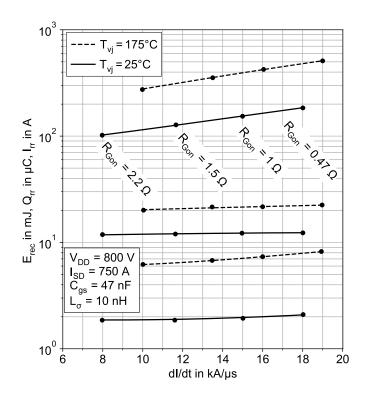


Fig. 11 Typical reverse recovery characteristics vs. di/dt

Hitachi Energy Switzerland Ltd Semiconductors Fabrikstrasse 3 5600 Lenzburg Switzerland Tel: +41 58 586 10 00

E-Mail: <u>salesdesksem@hitachienergy.com</u> www.hitachienergy.com/semiconductors

10³ T_{vj} = 175°C T_{vj} = 25°C l_{rr} E_{rec} in mJ, Q_{rr} in µC, I_{rr} in A 10 $_{10}$ 10² V_{DD} = 800 V $R_{Gon} = 0.47 \Omega$ $C_{gs} = 47 nF$ L_σ = 10 nH Q, E_{rec} 10⁰ Ò 200 400 600 800 1000 1200 1400 \mathbf{I}_{SD} in A

Fig. 10 Typical reverse recovery characteristics vs. forward current

We reserve the right to make technical changes or modify the contents of this document without prior notice. With regard to purchase orders, the agreed particulars shall prevail.

Hitachi Energy Ltd. does not accept any responsibility whatsoever for potential errors or possible lack of information in this document.